Using meta-learning to recommend an appropriate time-series forecasting model

There are various forecasting algorithms available for univariate time series, ranging from simple to sophisticated and computational. In practice, selecting the most appropriate algorithm can be difficult, because there are too many algorithms. Although expert knowledge is required to make an infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC public health 2024-01, Vol.24 (1), p.148-148, Article 148
Hauptverfasser: Talkhi, Nasrin, Akhavan Fatemi, Narges, Jabbari Nooghabi, Mehdi, Soltani, Ehsan, Jabbari Nooghabi, Azadeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are various forecasting algorithms available for univariate time series, ranging from simple to sophisticated and computational. In practice, selecting the most appropriate algorithm can be difficult, because there are too many algorithms. Although expert knowledge is required to make an informed decision, sometimes it is not feasible due to the lack of such resources as time, money, and manpower. In this study, we used coronavirus disease 2019 (COVID-19) data, including the absolute numbers of confirmed, death and recovered cases per day in 187 countries from February 20, 2020, to May 25, 2021. Two popular forecasting models, including Auto-Regressive Integrated Moving Average (ARIMA) and exponential smoothing state-space model with Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend, and Seasonal components (TBATS) were used to forecast the data. Moreover, the data were evaluated by the root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and symmetric mean absolute percentage error (SMAPE) criteria to label time series. The various characteristics of each time series based on the univariate time series structure were extracted as meta-features. After that, three machine-learning classification algorithms, including support vector machine (SVM), decision tree (DT), random forest (RF), and artificial neural network (ANN) were used as meta-learners to recommend an appropriate forecasting model. The finding of the study showed that the DT model had a better performance in the classification of time series. The accuracy of DT in the training and testing phases was 87.50% and 82.50%, respectively. The sensitivity of the DT algorithm in the training phase was 86.58% and its specificity was 88.46%. Moreover, the sensitivity and specificity of the DT algorithm in the testing phase were 73.33% and 88%, respectively. In general, the meta-learning approach was able to predict the appropriate forecasting model (ARIMA and TBATS) based on some time series features. Considering some characteristics of the desired COVID-19 time series, the ARIMA or TBATS forecasting model might be recommended to forecast the death, confirmed, and recovered trend cases of COVID-19 by the DT model.
ISSN:1471-2458
1471-2458
DOI:10.1186/s12889-023-17627-y