Combinatorial Enzymatic Synthesis of Unnatural Long-Chain β‑Branch Pyrones by a Highly Promiscuous Enzyme

In this study, we described in detail a combinatorial enzymatic synthesis approach to produce a series of unnatural long-chain β-branch pyrones. We attempted to investigate the catalytic potential of a highly promiscuous enzyme type III PKS to catalyze the non-decarboxylative condensation reaction b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2019-12, Vol.4 (25), p.21078-21082
Hauptverfasser: Pan, Lixia, Yang, Lilan, Huang, Yanbing, Liang, Yongyuan, He, Qihuan, Yang, Dengfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we described in detail a combinatorial enzymatic synthesis approach to produce a series of unnatural long-chain β-branch pyrones. We attempted to investigate the catalytic potential of a highly promiscuous enzyme type III PKS to catalyze the non-decarboxylative condensation reaction by two molecules of fatty acyl diketide-N-acetylcysteines (diketide-NACs) units. Two non-natural long-chain (C16, C18) fatty acyl diketide-NACs were prepared successfully for testing the ability of non-decarboxylative condensation. In vitro, 12 novel naturally unavailable long-chain β-branch pyrones were generated by one-pot formation and characterized by ultraviolet–visible spectroscopy and high-resolution liquid chromatography–mass spectrometry. Interestingly, enzymatic kinetics result displays that this enzyme exhibits the remarkable compatibility to various non-natural long-chain substrates. These results would be useful to deeply understand the catalytic mechanism of this enzyme and further extend the application of enzymatic synthesis of non-natural products.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b02473