The Musashi proteins direct post-transcriptional control of protein expression and alternate exon splicing in vertebrate photoreceptors

The Musashi proteins, MSI1 and MSI2, are conserved RNA binding proteins with a role in the maintenance and renewal of stem cells. Contrasting with this role, terminally differentiated photoreceptor cells express high levels of MSI1 and MSI2, pointing to a role for the two proteins in vision. Combine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2022-09, Vol.5 (1), p.1011-1011, Article 1011
Hauptverfasser: Matalkah, Fatimah, Jeong, Bohye, Sheridan, Macie, Horstick, Eric, Ramamurthy, Visvanathan, Stoilov, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Musashi proteins, MSI1 and MSI2, are conserved RNA binding proteins with a role in the maintenance and renewal of stem cells. Contrasting with this role, terminally differentiated photoreceptor cells express high levels of MSI1 and MSI2, pointing to a role for the two proteins in vision. Combined knockout of Msi1 and Msi2 in mature photoreceptor cells abrogated the retinal response to light and caused photoreceptor cell death. In photoreceptor cells the Musashi proteins perform distinct nuclear and cytoplasmic functions. In the nucleus, the Musashi proteins promote splicing of photoreceptor-specific alternative exons. Surprisingly, conserved photoreceptor-specific alternative exons in genes critical for vision proved to be dispensable, raising questions about the selective pressures that lead to their conservation. In the cytoplasm MSI1 and MSI2 activate protein expression. Loss of Msi1 and Msi2 lead to reduction in the levels of multiple proteins including proteins required for vision and photoreceptor survival. The requirement for MSI1 and MSI2 in terminally differentiated photoreceptors alongside their role in stem cells shows that, depending on cellular context, these two proteins can control processes ranging from cell proliferation to sensory perception. The RNA-binding proteins, Musashi 1 and 2, regulate splicing of photoreceptor-specific alternative exons and activate protein expression, and are essential for promoting translation of proteins required for vision and photoreceptor survival.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-022-03990-w