Electronic band structure and magnetism of CoFeV0.5Mn0.5Si

Half-metallic Heusler alloys have attracted significant attention due to their potential application in spin-transport-based devices. We have synthesized one such alloy, CoFeV0.5Mn0.5Si, using arc melting and high-vacuum annealing at 600 °C for 24 hours. First principles calculation indicates that C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2022-03, Vol.12 (3), p.035011-035011-5
Hauptverfasser: Kharel, Parashu, Baker, Gavin, Flesche, Matthew, Ramker, Adam, Moua, Young, Valloppilly, Shah, Shand, Paul M., Lukashev, Pavel V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Half-metallic Heusler alloys have attracted significant attention due to their potential application in spin-transport-based devices. We have synthesized one such alloy, CoFeV0.5Mn0.5Si, using arc melting and high-vacuum annealing at 600 °C for 24 hours. First principles calculation indicates that CoFeV0.5Mn0.5Si shows a nearly half-metallic band structure with a degree of spin polarization of about 93%. In addition, this value can be enhanced by the application of tensile strain. The room temperature x-ray diffraction patterns are indexed with the cubic crystal structure without secondary phases. The annealed sample shows ferromagnetic order with the Curie temperature well above room temperature (Tc = 657 K) and a saturation magnetization of about 92 emu/g. Our results indicate that CoFeV0.5Mn0.5Si has a potential for room temperature spin-transport-based devices.
ISSN:2158-3226
2158-3226
DOI:10.1063/9.0000252