Interdecadal Oscillation of the Ocean Heat Content as a Contribution to Understanding of Physical Aspects of the Present-Day Climate

A Specific feature of the present-day climate dynamics consists in its multidecadal oscillations with a period of about 20–60 years, and intradecadal disturbances with time scales of 2–8 years. The period of 1940–1999 was distinctive due to the two–phase structure in which the initial phase (1940–19...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2022-08, Vol.10 (8), p.1064
Hauptverfasser: Byshev, Vladimir, Gusev, Anatoly, Neiman, Victor, Sidorova, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Specific feature of the present-day climate dynamics consists in its multidecadal oscillations with a period of about 20–60 years, and intradecadal disturbances with time scales of 2–8 years. The period of 1940–1999 was distinctive due to the two–phase structure in which the initial phase (1940–1974) was substantially dry, and the final one (1975–1999) was relatively humid. The transition of the climate from the dry to the humid phase in the mid-1970s was recognized as a climatic shift. The certain globality and quasisynchronism of multidecadal climate changes occur involving planetary thermodynamic structures in the two most important components of the climate system, namely, the ocean and the atmosphere. The search for the origin of the observed present-day climate variability revealed the World Ocean (WO) active upper layer (AUL) heat content to demonstrate sequential multidecadal phases of heat accumulation and discharge consistent with multidecadal phases of climate disturbances. Thus, the WO AUL heat accumulation phase corresponds to a dry climate, and its thermal discharge corresponds to a relatively humid one. The mechanism of the observed multidecadal phase variability in the present-day climate consists of the planetary intrasystemic redistribution of heat between WO and continental air masses, where the general circulation of the atmosphere plays the role of an intermediary.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse10081064