Angelica Polysaccharide Ameliorates Sepsis-Induced Acute Lung Injury through Inhibiting NLRP3 and NF-κB Signaling Pathways in Mice

Objective. This study aimed to explore the role of angelica polysaccharide (AP) in sepsis-induced acute lung injury (ALI) and its underlying molecular mechanism. Methods. A sepsis model of cecal ligation and puncture (CLP) in male BALB/C mice was used. Then, 24 h after CLP, histopathological changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediators of inflammation 2021, Vol.2021, p.1-9
Hauptverfasser: Zhu, Yan, Meng, Taocheng, Sun, Aichen, Li, Jintao, Li, Jinlai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective. This study aimed to explore the role of angelica polysaccharide (AP) in sepsis-induced acute lung injury (ALI) and its underlying molecular mechanism. Methods. A sepsis model of cecal ligation and puncture (CLP) in male BALB/C mice was used. Then, 24 h after CLP, histopathological changes in lung tissue, lung wet/dry weight ratio, and inflammatory cell infiltration were analyzed. Next, levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-18), as well as the activity of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH), were measured to assess the role of AP. The protein expression of NF-κB p65, p-NF-κB p65, IκBα, p-IκBα, nucleotide-binding domain- (NOD-) like receptor protein 3 (NLRP3), ASC, and caspase-1 was detected by western blot. In addition, the expression of p-NF-κB p65 and NLRP3 was detected by immunohistochemistry. Results. AP treatment ameliorated CLP-induced lung injury and lung edema, as well as decreased the number of total cells, neutrophils, and macrophages in bronchoalveolar lavage fluid (BALF). AP reduced the levels of TNF-α, IL-1β, IL-6, and IL-18 in BALF, as well as in serum. Moreover, AP decreased MPO activity and MDA content, whereas increased SOD and GSH levels. AP inhibited the expression of p-NF-κB p65, p-IκBα, NLRP3, ASC, and caspase-1, while promoted IκBα expression. Conclusion. This study demonstrated that AP exhibits protective effects against sepsis-induced ALI by inhibiting NLRP3 and NF-κB signaling pathways in mice.
ISSN:0962-9351
1466-1861
DOI:10.1155/2021/8866143