Quantum computation of frequency-domain molecular response properties using a three-qubit iToffoli gate

The quantum computation of molecular response properties on near-term quantum hardware is a topic of substantial interest. Computing these properties directly in the frequency domain is desirable, but the circuits require large depth if the typical hardware gate set consisting of single- and two-qub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2024-05, Vol.10 (1), p.55-8, Article 55
Hauptverfasser: Sun, Shi-Ning, Marinelli, Brian, Koh, Jin Ming, Kim, Yosep, Nguyen, Long B., Chen, Larry, Kreikebaum, John Mark, Santiago, David I., Siddiqi, Irfan, Minnich, Austin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantum computation of molecular response properties on near-term quantum hardware is a topic of substantial interest. Computing these properties directly in the frequency domain is desirable, but the circuits require large depth if the typical hardware gate set consisting of single- and two-qubit gates is used. While high-fidelity multipartite gates have been reported recently, their integration into quantum simulation and the demonstration of improved accuracy of the observable properties remains to be shown. Here, we report the application of a high-fidelity multipartite gate, the iToffoli gate, to the computation of frequency-domain response properties of diatomic molecules. The iToffoli gate enables a ~50% reduction in circuit depth and ~40% reduction in circuit execution time compared to the traditional gate set. We show that the molecular properties obtained with the iToffoli gate exhibit comparable or better agreement with theory than those obtained with the native CZ gates. Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in quantum simulation, with diverse potential applications to near-term quantum computation.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-024-00850-9