Facile Synthesis and Characterization of Palladium@Carbon Catalyst for the Suzuki-Miyaura and Mizoroki-Heck Coupling Reactions
Palladium-based carbon catalysts (Pd/C) can be potentially applied as an efficient catalyst for Suzuki–Miyaura and Mizoroki–Heck coupling reactions. Herein, a variety of catalysts of palladium on activated carbon were prepared by varying the content of ‘Pd’ via an in situ reduction method, using hyd...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-06, Vol.11 (11), p.4822 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Palladium-based carbon catalysts (Pd/C) can be potentially applied as an efficient catalyst for Suzuki–Miyaura and Mizoroki–Heck coupling reactions. Herein, a variety of catalysts of palladium on activated carbon were prepared by varying the content of ‘Pd’ via an in situ reduction method, using hydrogen as a reducing agent. The as-prepared catalysts (0.5 wt % Pd/C, 1 wt % Pd/C, 2 wt % Pd/C and 3 wt % Pd/C) were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Brunauer–Emmett–Teller (BET) analyses. The catalysts were tested as a coupling catalyst for Suzuki–Miyaura coupling reactions involving aryl halides and phenyl boronic acid. The optimization of the catalyst by varying the palladium content on the activated carbon yielded Pd/C catalysts with very high catalytic activity for Suzuki reactions of aryl halides and a Mizoroki–Heck cross-coupling reaction of 4-bromoanisol and acrylic acid in an aqueous medium. A high ‘Pd’ content and uniform ‘Pd’ impregnation significantly affected the activity of the catalysts. The catalytic activity of 3% Pd/C was found to make it a more efficient catalyst when compared with the other synthesized Pd/C catalysts. Furthermore, the catalyst reusability was also tested for Suzuki reactions by repeatedly performing the same reaction using the recovered catalyst. The 3% Pd/C catalyst displayed better reusability even after several reactions. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11114822 |