On identities involving generalized harmonic, hyperharmonic and special numbers with Riordan arrays
In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for ≥ 0, and for > ≥ 0, where Bernoulli numbers and Stirling numbers of the first kind ( , ).
Gespeichert in:
Veröffentlicht in: | Special matrices 2021-01, Vol.9 (1), p.22-30 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for
≥ 0,
and for
>
≥ 0,
where Bernoulli numbers
and Stirling numbers of the first kind
(
,
). |
---|---|
ISSN: | 2300-7451 2300-7451 |
DOI: | 10.1515/spma-2020-0111 |