Study on the Origin and Fluid Identification of Low-Resistance Gas Reservoirs

The Wu 2 section of the Ke017 well block is a low-resistance gas reservoir with ultralow porosity and low permeability. The comprehensive analysis of rock lithology, physical properties, sedimentary characteristics, and gas content demonstrated that the development of micropores in illite/smectite d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geofluids 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Qingxiong, Hu, Wentao, Liu, Zhiqi, Wu, Yule, Yan, Yuhui, Zhou, Jialing, Ma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Wu 2 section of the Ke017 well block is a low-resistance gas reservoir with ultralow porosity and low permeability. The comprehensive analysis of rock lithology, physical properties, sedimentary characteristics, and gas content demonstrated that the development of micropores in illite/smectite dominated clay minerals together with the resulted additional conductivity capability and complex reservoir pore structures, as well as the enrichment of self-generating conductivity minerals like zeolites and pyrite which were the formation mechanisms of low-resistance gas layers in the Wu 2 section. A low-resistance gas reservoir has poor physical property, and it is difficult to distinguish the oil layer from the dry, gas, or water layers. In this paper, based on well/mud logging data and laboratory data, by taking advantages of the “excavation effect” of neutron gas and the dual-lateral resistivity difference between different depths, we successfully established a set of low-contrast log response methods for the identification and evaluation of oil layer and formation fluids. For a gas layer, the difference between neutron porosity and acoustic (or density) porosity is smaller than 0 and the difference in dual-lateral resistivity is greater than 0. For a water layer, the neutron porosity is similar to the acoustic (or density) porosity and the dual-lateral resistivity difference will be less than 0. While for a dry layer or a layer with both gas and water, the difference in porosity as well as dual-lateral resistivity is very small. The proposed method effectively solves the technical problem of oil layer and formation fluid identification in low-resistance gas reservoirs.
ISSN:1468-8115
1468-8123
DOI:10.1155/2020/8859309