Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape
The extravillous trophoblast cell lineage is a key feature of placentation and successful pregnancy. Knowledge of transcriptional regulation driving extravillous trophoblast cell development is limited. Here, we map the transcriptome and epigenome landscape as well as chromatin interactions of human...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-08, Vol.14 (1), p.4826-23, Article 4826 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The extravillous trophoblast cell lineage is a key feature of placentation and successful pregnancy. Knowledge of transcriptional regulation driving extravillous trophoblast cell development is limited. Here, we map the transcriptome and epigenome landscape as well as chromatin interactions of human trophoblast stem cells and their transition into extravillous trophoblast cells. We show that integrating chromatin accessibility, long-range chromatin interactions, transcriptomic, and transcription factor binding motif enrichment enables identification of transcription factors and regulatory mechanisms critical for extravillous trophoblast cell development. We elucidate functional roles for
TFAP2C
,
SNAI1
, and
EPAS1
in the regulation of extravillous trophoblast cell development.
EPAS1
is identified as an upstream regulator of key extravillous trophoblast cell transcription factors, including
ASCL2
and
SNAI1
and together with its target genes, is linked to pregnancy loss and birth weight. Collectively, we reveal activation of a dynamic regulatory network and provide a framework for understanding extravillous trophoblast cell specification in trophoblast cell lineage development and human placentation.
Invasive extravillous trophoblast cells are a key feature of placentation and successful pregnancy. Here, the authors identify transcription factors and regulatory mechanisms critical for extravillous trophoblast cell lineage development. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-40424-5 |