Screening of Codonopsis radix Polysaccharides with Different Molecular Weights and Evaluation of Their Immunomodulatory Activity In Vitro and In Vivo
Polysaccharide is one of the main components of Codonopsis radix (CR) and has good immune activity. However, the immune activity of CR polysaccharides with different molecular weights has not been systematically screened. In this study, the polysaccharides of CR from Pingshun of Shanxi Province (PSD...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2022-08, Vol.27 (17), p.5454 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polysaccharide is one of the main components of Codonopsis radix (CR) and has good immune activity. However, the immune activity of CR polysaccharides with different molecular weights has not been systematically screened. In this study, the polysaccharides of CR from Pingshun of Shanxi Province (PSDSs) were first divided into two groups using ultrafiltration: 3.3 kDa (PSDSs-1) and more than 2000 kDa (PSDSs-2). The immunomodulatory effects of PSDSs with different molecular weights were evaluated in vitro and in vivo. In vitro experimental results showed that compared with Lipopolysaccharide-induced macrophages, PSDSs-1 increased TNF-α and IL-6 levels and decreased IL-10. Meanwhile, PSDSs-2 showed the opposite effect, indicating the difference in pro- and anti-inflammatory activities of PSDSs with different molecular weights. The immunosuppressive model of cyclophosphamide proved that PSDSs have immune-promoting function, with PSDSs-1 exhibiting a better effect than PSDSs-2. In vitro and in vivo experiments illustrated the complexity of PSDS immunomodulation. Further research on the functions of PSDs with different molecular weights is needed to lay a foundation for their classification and application. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27175454 |