Synthesis, characterization, and in vitro antimicrobial investigation of novel pyran derivatives based on 8-hydroxyquinoline

Background 8-Hydroxyquinoline derivatives are known for their extensive applications in the field of analytical chemistry and separation techniques; their complexes with transition metals also exhibit antibacterial and antifungal activity. Results In the present study, we synthesized a new series of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beni-Suef University journal of basic and applied sciences 2019-09, Vol.8 (1), p.8-7, Article 8
Hauptverfasser: Rbaa, Mohamed, Hichar, Abdelhadi, Bazdi, Omar, Lakhrissi, Younes, Ounine, Khadija, Lakhrissi, Brahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background 8-Hydroxyquinoline derivatives are known for their extensive applications in the field of analytical chemistry and separation techniques; their complexes with transition metals also exhibit antibacterial and antifungal activity. Results In the present study, we synthesized a new series of pyranoquinoline derivatives and evaluated their antibacterial activities. The structures of the synthesized compounds were characterized by Fourier transform infrared (FT-IR), hydrogen-1 nuclear magnetic resonance , c arbon - 13 nuclear magnetic resonance , and elemental analysis . All the prepared compounds were evaluated in vitro as antimicrobial agents against Gram-positive and Gram-negative bacterial strains ( Escherichia coli (ATCC35218), Staphylococcus aureus (ATCC29213), Vibrio parahaemolyticus (ATCC17802), and Pseudomonas aeruginosa (ATCC27853)). The screening test was determined by using the standard protocol of disc diffusion method (DDM). Conclusion We have synthesized new pyranic compounds bearing an 8-hydroxyquinoline moiety on their structure. The preliminary screening results showed that all the tested compounds have a remarkable inhibitory effect on the growth of the majority of the tested bacterial strains compared to the standard antibiotic (penicillin G), and the chlorinated compound (Q 1 ) is more active against Gram-positive bacteria than Gram-negative bacteria such as the Staphylococcus aureus strain which is the most sensitive. Gram-positive bacteria are responsible for a wide range of infectious diseases, and rising resistance in this group is causing increasing concern. Thus, this study develops novel heterocyclic compound derivatives of 8-hydroxyquinoline that have demonstrated good antibacterial activity against Gram-positive bacteria. Graphical abstract
ISSN:2314-8543
2314-8535
2314-8543
DOI:10.1186/s43088-019-0009-9