Paracrine Factors of Stressed Peripheral Blood Mononuclear Cells Activate Proangiogenic and Anti-Proteolytic Processes in Whole Blood Cells and Protect the Endothelial Barrier
Tissue-regenerative properties have been attributed to secreted paracrine factors derived from stem cells and other cell types. In particular, the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) has been shown to possess high tissue-regenerative and proangiogenic capacities in...
Gespeichert in:
Veröffentlicht in: | Pharmaceutics 2022-07, Vol.14 (8), p.1600 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tissue-regenerative properties have been attributed to secreted paracrine factors derived from stem cells and other cell types. In particular, the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) has been shown to possess high tissue-regenerative and proangiogenic capacities in a variety of preclinical studies. In light of future therapeutic intravenous applications of PBMCsec, we investigated the possible effects of PBMCsec on white blood cells and endothelial cells lining the vasculature. To identify changes in the transcriptional profile, whole blood was drawn from healthy individuals and stimulated with PBMCsec for 8 h ex vivo before further processing for single-cell RNA sequencing. PBMCsec significantly altered the gene signature of granulocytes (17 genes), T-cells (45 genes), B-cells (72 genes), and, most prominently, monocytes (322 genes). We detected a strong upregulation of several tissue-regenerative and proangiogenic cyto- and chemokines in monocytes, including VEGFA, CXCL1, and CXCL5. Intriguingly, inhibitors of endopeptidase activity, such as SERPINB2, were also strongly induced. Measurement of the trans-endothelial electrical resistance of primary human microvascular endothelial cells revealed a strong barrier-protective effect of PBMCsec after barrier disruption. Together, we show that PBMCsec induces angiogenic and proteolytic processes in the blood and is able to attenuate endothelial barrier damage. These regenerative properties suggest that systemic application of PBMCsec might be a promising novel strategy to restore damaged organs. |
---|---|
ISSN: | 1999-4923 1999-4923 |
DOI: | 10.3390/pharmaceutics14081600 |