Stability and Energy-Casimir Mapping for Integrable Deformations of the Kermack-McKendrick System
Integrable deformations of a Hamilton-Poisson system can be obtained altering its constants of motion. These deformations are integrable systems that can have various dynamical properties. In this paper, we give integrable deformations of the Kermack-McKendrick model for epidemics, and we analyze a...
Gespeichert in:
Veröffentlicht in: | Advances in Mathematical Physics 2018-01, Vol.2018 (2018), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Integrable deformations of a Hamilton-Poisson system can be obtained altering its constants of motion. These deformations are integrable systems that can have various dynamical properties. In this paper, we give integrable deformations of the Kermack-McKendrick model for epidemics, and we analyze a particular integrable deformation. More precisely, we point out two Poisson structures that lead to infinitely many Hamilton-Poisson realizations of the considered system. Furthermore, we study the stability of the equilibrium points, we give the image of the energy-Casimir mapping, and we point out some of its properties. |
---|---|
ISSN: | 1687-9120 1687-9139 |
DOI: | 10.1155/2018/5398768 |