Estimation of social genetic effects on feeding behaviour and production traits in pigs

Pigs are housed in groups during the test period. Social effects between pen mates may affect average daily gain (ADG), backfat thickness (BF), feed conversion rate (FCR), and the feeding behaviour traits of pigs sharing the same pen. The aim of our study was to estimate the genetic parameters of fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal (Cambridge, England) England), 2021-03, Vol.15 (3), p.100168-100168, Article 100168
Hauptverfasser: Kavlak, A.T., Strandén, I., Lidauer, M.H., Uimari, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pigs are housed in groups during the test period. Social effects between pen mates may affect average daily gain (ADG), backfat thickness (BF), feed conversion rate (FCR), and the feeding behaviour traits of pigs sharing the same pen. The aim of our study was to estimate the genetic parameters of feeding behaviour and production traits with statistical models that include social genetic effects (SGEs). The data contained 3075 Finnish Yorkshire, 3351 Finnish Landrace, and 968 F1-crossbred pigs. Feeding behaviour traits were measured as the number of visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time spent in feeding per visit (TPV), feed intake per visit (FPV), and feed intake rate (FR). The test period was divided into five periods of 20 days. The number of pigs per pen varied from 8 to 12. Two model approaches were tested, i.e. a fixed group size model and a variable group size model. For the fixed group size model, eight random pigs per pen were included in the analysis, while all pigs in a pen were included for the variable group size model. The linear mixed-effects model included sex, breed, and herd*year*season as fixed effects and group (batch*pen), litter, the animal itself (direct genetic effect (DGE)), and pen mates (SGEs) as random effects. For feeding behaviour traits, estimates of the total heritable variation (T2± SE) and classical heritability (h2± SE, values given in brackets) from the variable group size model (e.g. period 1) were 0.34 ± 0.13 (0.30 ± 0.04) for NVD, 0.41 ± 0.10 (0.37 ± 0.04) for TPD, 0.40 ± 0.15 (0.14 ± 0.03) for DFI, 0.53 ± 0.15 (0.28 ± 0.04) for TPV, 0.66 ± 0.17 (0.28 ± 0.04) for FPV, and 0.29 ± 0.13 (0.22 ± 0.03) for FR. The effect of social interaction was minimal for ADG (T2 = 0.29 ± 0.11 and h2 = 0.29 ± 0.04), BF (T2 = 0.48 ± 0.12 and h2 = 0.38 ± 0.07), and FCR (T2 = 0.37 ± 0.12 and h2 = 0.29 ± 0.04) using the variable group size model. In conclusion, the results indicate that social interactions have a considerable indirect genetic effect on the feeding behaviour and FCR of pigs but not on ADG and BF.
ISSN:1751-7311
1751-732X
DOI:10.1016/j.animal.2020.100168