Analysis of light weight natural fiber composites against ballistic impact: A review
The main factors in the ballistic impact mechanism, an incredibly complicated mechanical process, are the target material's thickness, toughness, strength, ductility, density, and projectile parameters. Creating resilient, high-strength, and high-modulus fibers has made it possible to use natur...
Gespeichert in:
Veröffentlicht in: | International Journal of Lightweight Materials and Manufacture 2023-09, Vol.6 (3), p.450-468 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main factors in the ballistic impact mechanism, an incredibly complicated mechanical process, are the target material's thickness, toughness, strength, ductility, density, and projectile parameters. Creating resilient, high-strength, and high-modulus fibers has made it possible to use natural fibers and their composite laminates for various impact-related applications today. Kinetic energy absorption, penetration depth, and residual velocity were the parameters affecting the performance of natural fiber composites used in the armor systems. This review aims to comprehend the several influencing factors that significantly impact the target's ballistic impact performance. In addition to experimental study efforts, many analytical, numerical modeling, and empirical technique-based research approaches have also been considered while analyzing the various components. The paper also examines several factors that determine how well natural fiber composite functions, including internal factors like material composition, characteristics of matrix and reinforcement, the kind and choice of fiber/matrix, failure modes, impact energy absorption, and external factors such as residual velocity, and various projectile nose angles. It also emphasizes the ways to improve composites for high performance and ballistic efficiency, as well as the economic cost analysis of switching out synthetic fibers for natural ones in a ballistic composite. |
---|---|
ISSN: | 2588-8404 2588-8404 |
DOI: | 10.1016/j.ijlmm.2023.01.003 |