Study on Preparation and Stability of Perovskite Solar Cells with Supramolecular Interaction
In recent years, perovskite solar cells have been developed rapidly because of its excellent crystalline properties, high optical absorption coefficient, high carrier mobility, long carrier life and direct band gap, and suitable to be used as light absorbing layer material of photovoltaic devices. H...
Gespeichert in:
Veröffentlicht in: | E3S web of conferences 2020-01, Vol.185, p.1065 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, perovskite solar cells have been developed rapidly because of its excellent crystalline properties, high optical absorption coefficient, high carrier mobility, long carrier life and direct band gap, and suitable to be used as light absorbing layer material of photovoltaic devices. However, the most prominent problem of perovskite materials is that a lot of organic cations will migrate and lose in the process of illumination or heating, which is considered to be the main reason for the performance degradation of perovskite films and devices. Therefore, the suppression of ion migration in perovskite is helpful to improve the stability of perovskite materials and devices and enhance their photoelectric properties. In order to effectively control the ion migration in perovskite films, this paper uses the cation-π supramolecular interaction, to prepare the perovskite films with better photoelectric performance and higher stability. The experimental results show that the photoelectric conversion efficiency of the perovskite solar cellsdevice doped with rubrene is increased from 18.60% to 20.86%, and the hysteresis of the cell is also significantly suppressed. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/202018501065 |