Total 2-Rainbow Domination in Graphs
A total k-rainbow dominating function on a graph G=(V,E) is a function f:V(G)→2{1,2,…,k} such that (i) ∪u∈N(v)f(u)={1,2,…,k} for every vertex v with f(v)=∅, (ii) ∪u∈N(v)f(u)≠∅ for f(v)≠∅. The weight of a total 2-rainbow dominating function is denoted by ω(f)=∑v∈V(G)|f(v)|. The total k-rainbow domina...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2022-06, Vol.10 (12), p.2059 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A total k-rainbow dominating function on a graph G=(V,E) is a function f:V(G)→2{1,2,…,k} such that (i) ∪u∈N(v)f(u)={1,2,…,k} for every vertex v with f(v)=∅, (ii) ∪u∈N(v)f(u)≠∅ for f(v)≠∅. The weight of a total 2-rainbow dominating function is denoted by ω(f)=∑v∈V(G)|f(v)|. The total k-rainbow domination number of G is the minimum weight of a total k-rainbow dominating function of G. The minimum total 2-rainbow domination problem (MT2RDP) is to find the total 2-rainbow domination number of the input graph. In this paper, we study the total 2-rainbow domination number of graphs. We prove that the MT2RDP is NP-complete for planar bipartite graphs, chordal bipartite graphs, undirected path graphs and split graphs. Then, a linear-time algorithm is proposed for computing the total k-rainbow domination number of trees. Finally, we study the difference in complexity between MT2RDP and the minimum 2-rainbow domination problem. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10122059 |