Observation of an exotic insulator to insulator transition upon electron doping the Mott insulator CeMnAsO

A promising route to discover exotic electronic states in correlated electron systems is to vary the hole or electron doping away from a Mott insulating state. Important examples include quantum criticality and high-temperature superconductivity in cuprates. Here, we report the surprising discovery...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-11, Vol.14 (1), p.7037-7037, Article 7037
Hauptverfasser: Wildman, E. J., Lawrence, G. B., Walsh, A., Morita, K., Simpson, S., Ritter, C., Stenning, G. B. G., Arevalo-Lopez, A. M., Mclaughlin, A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A promising route to discover exotic electronic states in correlated electron systems is to vary the hole or electron doping away from a Mott insulating state. Important examples include quantum criticality and high-temperature superconductivity in cuprates. Here, we report the surprising discovery of a quantum insulating state upon electron doping the Mott insulator CeMnAsO, which emerges below a distinct critical transition temperature, T II . The insulator-insulator transition is accompanied by a significant reduction in electron mobility as well as a colossal Seebeck effect and slow dynamics due to decoupling of the electrons from the lattice phonons. The origin of the transition is tentatively interpreted in terms of many-body localization, which has not been observed previously in a solid-state material. Doping a Mott insulator can lead to novel electronic states. Wildman et al. observe a novel quantum insulating state in electron-doped Mott insulator CeMnAsO and propose a tentative interpretation in terms of many-body localization, which has not been observed in a solid-state material.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-42858-3