circRNA-0002109 promotes glioma malignant progression via modulating the miR-129-5P/EMP2 axis
Glioma is a common intracranial malignant tumor with high mortality and high recurrence rate. In recent years, increasing evidence has demonstrated that circular RNAs (circRNAs) are potential biomarkers and therapeutic targets for many tumors. However, the role of circRNAs in glioma remains unclear....
Gespeichert in:
Veröffentlicht in: | Molecular therapy. Nucleic acids 2022-03, Vol.27, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glioma is a common intracranial malignant tumor with high mortality and high recurrence rate. In recent years, increasing evidence has demonstrated that circular RNAs (circRNAs) are potential biomarkers and therapeutic targets for many tumors. However, the role of circRNAs in glioma remains unclear. In this study, we found that circRNA-0002109 was highly expressed in glioma tissues and cell lines. Downregulation of circRNA-0002109 expression inhibited the proliferation, migration, and invasion of glioma cells and inhibited the malignant progression of tumors in vivo. Investigations into the relevant mechanisms showed that circRNA-0002109 upregulated the expression of EMP2 through endogenous competitive binding of microRNA-129-5P (miR-129-5P), which partially alleviated the inhibitory effect of miR-129-5P on epithelial membrane protein-2 (EMP2) and ultimately promoted the malignant development of glioma. Our results indicate that circRNA-0002109 plays an important role in the proliferation, invasion, and migration of glioma cells by regulating the miR-129-5P/EMP2 axis, which provides a new potential therapeutic target for glioma.
[Display omitted]
In this paper, we identified a novel circRNA named circRNA-0002109 and identified it as an oncogene. Moreover, we found that circRNA-0002109 promotes glioma proliferation, migration, and invasion by regulating the miR-129-5P/EMP2 axis. |
---|---|
ISSN: | 2162-2531 2162-2531 |
DOI: | 10.1016/j.omtn.2021.11.011 |