Interleukin-22 Inhibits Bleomycin-Induced Pulmonary Fibrosis

Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediators of Inflammation 2013-01, Vol.2013 (2013), p.567-577-052
Hauptverfasser: Zhou, Xiaodong, Guan, Ming, Xue, Yu, Chen, Xiangjun, Zou, Hejian, Liang, Minrui, Qiu, Jianhua, Liu, Qiong, He, Hang, Wang, Jiucun, Chu, Haiyan, Zhu, Xiaoxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin- (IL-) 22 is involved in various pulmonary pathophysiological processes, the role of IL-22 in fibrotic lung diseases is still unclear and needs to be further addressed. Here we investigated the effect of IL-22 on alveolar epithelial cells in the bleomycin- (BLM-) induced pulmonary fibrosis. BLM-treated mice showed significantly decreased level of IL-22 in the lung. IL-22 produced γδT cells were also decreased significantly both in the tissues of lungs and spleens. Administration of recombinant human IL-22 to alveolar epithelial cell line A549 cells ameliorated epithelial to mesenchymal transition (EMT) and partially reversed the impaired cell viability induced by BLM. Furthermore, blockage of IL-22 deteriorated pulmonary fibrosis, with elevated EMT marker (α-smooth muscle actin (α-SMA)) and overactivated Smad2. Our results indicate that IL-22 may play a protective role in the development of BLM-induced pulmonary fibrosis and may suggest IL-22 as a novel immunotherapy tool in treating pulmonary fibrosis.
ISSN:0962-9351
1466-1861
DOI:10.1155/2013/209179