Ultra Short-Term Power Load Forecasting Based on Similar Day Clustering and Ensemble Empirical Mode Decomposition

With the increasing demand of the power industry for load forecasting, improving the accuracy of power load forecasting has become increasingly important. In this paper, we propose an ultra short-term power load forecasting method based on similar day clustering and EEMD (Ensemble Empirical Mode Dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2023-02, Vol.16 (4), p.1989
Hauptverfasser: Zeng, Wenhui, Li, Jiarui, Sun, Changchun, Cao, Lin, Tang, Xiaoping, Shu, Shaolong, Zheng, Junsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increasing demand of the power industry for load forecasting, improving the accuracy of power load forecasting has become increasingly important. In this paper, we propose an ultra short-term power load forecasting method based on similar day clustering and EEMD (Ensemble Empirical Mode Decomposition). In detail, the K-means clustering algorithm was utilized to divide the historical data into different clusters. Through EEMD, the load data of each cluster were decomposed into several sub-sequences with different time scales. The LSTNet (Long- and Short-term Time-series Network) was adopted as the load forecasting model for these sub-sequences. The forecast results for different sub-sequences were combined as the expected result. The proposed method predicts the load in the next 4 h with an interval of 15 min. The experimental results show that the proposed method obtains higher prediction accuracy than other comparable forecasting models.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16041989