Ferulic acid attenuates non-alcoholic steatohepatitis by reducing oxidative stress and inflammation through inhibition of the ROCK/NF-κB signaling pathways

Ferulic acid (FA) is a natural polyphenol compound existing in many plants. The purpose of this study was to investigate the effect of FA on non-alcoholic steatohepatitis (NASH) induced by high-cholesterol and high-fat diet (HCHF) and its possible mechanism. Rats were fed HCHF for 12 weeks to establ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmacological sciences 2021-09, Vol.147 (1), p.72-80
Hauptverfasser: Wei, Ziheng, Xue, Yurun, Xue, Yucong, Cheng, Jie, Lv, Guoping, Chu, Li, Ma, Zhihong, Guan, Shengjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferulic acid (FA) is a natural polyphenol compound existing in many plants. The purpose of this study was to investigate the effect of FA on non-alcoholic steatohepatitis (NASH) induced by high-cholesterol and high-fat diet (HCHF) and its possible mechanism. Rats were fed HCHF for 12 weeks to establish NASH model. FA improved liver coefficients and had no effect on body weight changes. FA could reduce serum alanine transferase (ALT) and aspartate transferase (AST) activities. FA attenuated the increase of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) levels caused by NASH, improved the liver pathological damage induced by NASH, and inhibited the progression of liver fibrosis. FA prevented the production of reactive oxygen species (ROS) and the increase of malondialdehyde (MDA) levels, and attenuated the decrease in superoxide dismutase (SOD) activity. Meanwhile, FA significantly restored the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α). In addition, we also found that FA inhibited the activity of ROCK and the activation of NF-κB signaling pathway in the liver of NASH rats. Overall, FA has a hepatoprotective anti-oxidative stress and anti-inflammatory effects in NASH rats, and its mechanism may be related to the inhibition of ROCK/NF-κB signaling pathway.
ISSN:1347-8613
1347-8648
DOI:10.1016/j.jphs.2021.05.006