Z-ligustilide preferentially caused mitochondrial dysfunction in AML HL-60 cells by activating nuclear receptors NUR77 and NOR1

Background Nuclear receptors NUR77 and NOR1 were identified as critical targets in acute myeloid leukemia (AML) therapy. Previously, we showed that Z-ligustilide (Z-LIG) selectively targeted AML by restoring NUR77 and NOR1. However, its downstream mechanisms are yet to be elucidated. Methods SRB sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese medicine 2023-09, Vol.18 (1), p.1-123, Article 123
Hauptverfasser: Liu, Gen, Chen, Zhi-gang, Yang, Li-rong, Rong, Yu-xia, Wang, Qin, Li, Li, Lu, Qian-wei, Jiang, Ming-dong, Qi, Hong-yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Nuclear receptors NUR77 and NOR1 were identified as critical targets in acute myeloid leukemia (AML) therapy. Previously, we showed that Z-ligustilide (Z-LIG) selectively targeted AML by restoring NUR77 and NOR1. However, its downstream mechanisms are yet to be elucidated. Methods SRB staining assay was used to measure cell viability. Cell apoptosis, mitochondrial membrane potential and mitochondrial reactive oxygen species were analyzed using flow cytometry. The potential targets of Z-LIG in AML HL-60 cells were evaluated by RNA sequencing. Changes in RNA levels were measured using quantitative RT-qPCR and western blot analysis was used to detect the expression of proteins. Results Z-LIG preferentially induced mitochondrial dysfunction in HL-60 cells compared with 293T cells. Furthermore, RNA sequencing revealed that mitochondrial transcription and translation might be potential Z-LIG targets inhibiting HL-60 cells. NUR77/NOR1 overexpression significantly reduced the mitochondrial ATP and mitochondrial membrane potential and increased mitochondrial reactive oxygen species in HL-60 cells but not in 293T cells. Moreover, Z-LIG induced mitochondrial dysfunction by restoring NUR77 and NOR1 in HL-60 cells. Compared with HL-60 cells, the apoptosis-inducing activities of NUR77/NOR1 and Z-LIG were significantly reduced in HL-60 [rho]0 cells depleted in mitochondrial DNA (mt-DNA). Moreover, NUR77/NOR1 and Z-LIG downregulated mitochondrial transcription and translation related proteins in HL-60 cells. Notably, Z-LIG remarkably reduced mitochondrial ATP in primary AML cells and showed anti-AML activity in mouse models of human AML. Conclusions Collectively, our findings suggested that Z-LIG selectively induces mitochondrial dysfunction in AML HL-60 cells by restoring NUR77 and NOR1, a process associated with interference in mtDNA transcription. Keywords: Z-ligustilide, Acute myeloid leukemia, NUR77, NOR1, Mitochondrial dysfunction
ISSN:1749-8546
1749-8546
DOI:10.1186/s13020-023-00808-7