Modeling Long and Short Term User Preferences by Leveraging Multi-Dimensional Auxiliary Information for Next POI Recommendation
Next Point-of-Interest (POI) recommendation has shown great value for both users and providers in location-based services. Existing methods mainly rely on partial information in users’ check-in sequences, and are brittle to users with few interactions. Moreover, they ignore the impact of multi-dimen...
Gespeichert in:
Veröffentlicht in: | ISPRS international journal of geo-information 2023-09, Vol.12 (9), p.352 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Next Point-of-Interest (POI) recommendation has shown great value for both users and providers in location-based services. Existing methods mainly rely on partial information in users’ check-in sequences, and are brittle to users with few interactions. Moreover, they ignore the impact of multi-dimensional auxiliary information such as user check-in frequency, POI category on user preferences modeling and the impact of dynamic changes in user preferences over different time periods on recommendation performance. To address the above limitations, we propose a novel method for next POI recommendation by modeling long and short term user preferences with multi-dimensional auxiliary information. In particular, the proposed model includes a static LSTM module to capture users’ multi-dimensional long term static preferences and a dynamic meta-learning module to capture users’ multi-dimensional dynamic preferences. Furthermore, we incorporate a POI category filter into our model to comprehensively simulate users’ preferences. Experimental results on two real-world datasets demonstrate that our model outperforms the state-of-the-art baseline methods in two commonly used evaluation metrics. |
---|---|
ISSN: | 2220-9964 2220-9964 |
DOI: | 10.3390/ijgi12090352 |