Two-dimensional Graphene/MoS2 vertical heterostructure for detection of hemoglobin concentration in blood samples
This study demonstrates the use of computational methods to simulate the molecular dynamics involved in hemoglobin concentration sensing, utilizing Material Studio and the TCAD Silvaco device simulator. A non-invasive and flexible Graphene/MoS2 heterostructure has been proposed for sensing hemoglobi...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-09, Vol.19 (9), p.e0310166 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study demonstrates the use of computational methods to simulate the molecular dynamics involved in hemoglobin concentration sensing, utilizing Material Studio and the TCAD Silvaco device simulator. A non-invasive and flexible Graphene/MoS2 heterostructure has been proposed for sensing hemoglobin concentration in blood samples. The findings reveal a notable shift in the wavelength-dependent refractive index and extinction coefficient, as well as significant changes in the absorption coefficient and reflectivity of the Graphene/MoS2 heterostructure in response to different hemoglobin concentrations, specifically within an approximate range of 0.3 μm to 1 μm. Moreover, the spectral response of the heterostructure demonstrates that at a particular wavelength of approximately 600 nm, a maximum response is obtained. This wavelength can be considered optimal for detecting various levels of hemoglobin using this heterostructure. The anticipated outcome is a comprehensive understanding of the fundamental principles, ultimately resulting in the development of an exceptionally sensitive platform for detecting hemoglobin concentration. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0310166 |