Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran
Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT) systems produce electrical and thermal energy s...
Gespeichert in:
Veröffentlicht in: | Māshīnʹhā-yi kishāvarzī 2017-03, Vol.7 (1), p.221-233 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT) systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2), a heat exchanger in the tank (with volume of 300 L), a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected to the tank outlet, rises the fluid temperature to the set point. The performance of the designed system has been investigated in different cities (including Tabriz, Tehran, Kerman and Bandar-Abbas) during 4 seasons of year using Transient System Simulation (TRNSYS) program. The performance parameters included electrical and thermal energy generation and solar fraction. Solar fraction, which expresses the share of energy supplied by solar radiation on the collector in total thermal energy consumption, was obtain |
---|---|
ISSN: | 2228-6829 2423-3943 |
DOI: | 10.22067/jam.v7i1.47426 |