Large-time asymptotic solutions of the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation

Asymptotic solutions are constructed for the 1D nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein-Ehrenfest system for the 2D Fisher-Kolmogorov-Petrovskii-Piskunov equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kompʹûternye issledovaniâ i modelirovanie (Online) 2013-08, Vol.5 (4), p.543-558
Hauptverfasser: Levchenko, Evgeny Anatolevich, Trifonov, Andrey Yur'evich, Shapovalov, Aleksandr Vasilievich
Format: Artikel
Sprache:eng ; rus
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Asymptotic solutions are constructed for the 1D nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein-Ehrenfest system for the 2D Fisher-Kolmogorov-Petrovskii-Piskunov equation are found. The solutions describe properties of 2D patterns localized on 1D manifolds.
ISSN:2076-7633
2077-6853
DOI:10.20537/2076-7633-2013-5-4-543-558