Large-time asymptotic solutions of the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
Asymptotic solutions are constructed for the 1D nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein-Ehrenfest system for the 2D Fisher-Kolmogorov-Petrovskii-Piskunov equation...
Gespeichert in:
Veröffentlicht in: | Kompʹûternye issledovaniâ i modelirovanie (Online) 2013-08, Vol.5 (4), p.543-558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; rus |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Asymptotic solutions are constructed for the 1D nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation. Such solutions allow to describe the quasi-steady-state patterns. Similar asymptotic solutions of the dynamical Einstein-Ehrenfest system for the 2D Fisher-Kolmogorov-Petrovskii-Piskunov equation are found. The solutions describe properties of 2D patterns localized on 1D manifolds. |
---|---|
ISSN: | 2076-7633 2077-6853 |
DOI: | 10.20537/2076-7633-2013-5-4-543-558 |