Ordering of trees by multiplicative second Zagreb index
For a graph $G$ with edge set $E(G)$, the multiplicative second Zagreb index of $G$ is defined as $Pi_2(G)=Pi_{uvin E(G)}[d_G(u)d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$. In this paper, we identify the eighth class of trees, with the first through eighth smallest multi...
Gespeichert in:
Veröffentlicht in: | Transactions on combinatorics 2016-03, Vol.5 (1), p.49-55 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a graph $G$ with edge set $E(G)$, the multiplicative second Zagreb index of $G$ is defined as $Pi_2(G)=Pi_{uvin E(G)}[d_G(u)d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$. In this paper, we identify the eighth class of trees, with the first through eighth smallest multiplicative second Zagreb indeces among all trees of order $ngeq 14$. |
---|---|
ISSN: | 2251-8657 2251-8665 |