Ordering of trees by multiplicative second Zagreb index

‎For a graph $G$ with edge set $E(G)$‎, ‎the multiplicative second Zagreb index of $G$ is defined as‎ ‎$Pi_2(G)=Pi_{uvin E(G)}[d_G(u)d_G(v)]$‎, ‎where $d_G(v)$ is the degree of vertex $v$ in $G$‎. ‎In this paper‎, ‎we identify the eighth class of trees‎, ‎with the first through eighth smallest multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions on combinatorics 2016-03, Vol.5 (1), p.49-55
Hauptverfasser: Mehdi Eliasi, Ali Ghalavand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:‎For a graph $G$ with edge set $E(G)$‎, ‎the multiplicative second Zagreb index of $G$ is defined as‎ ‎$Pi_2(G)=Pi_{uvin E(G)}[d_G(u)d_G(v)]$‎, ‎where $d_G(v)$ is the degree of vertex $v$ in $G$‎. ‎In this paper‎, ‎we identify the eighth class of trees‎, ‎with the first through eighth smallest multiplicative second Zagreb indeces among all trees of order $ngeq 14$‎.
ISSN:2251-8657
2251-8665