Myoelectric Activity and Fatigue in Low-Load Resistance Exercise With Different Pressure of Blood Flow Restriction: A Systematic Review and Meta-Analysis
Background: Low-load resistance exercise (LL-RE) with blood flow restriction (BFR) promotes increased metabolic response and fatigue, as well as more pronounced myoelectric activity than traditional LL-RE. Some studies have shown that the relative pressure applied during exercise may have an effect...
Gespeichert in:
Veröffentlicht in: | Frontiers in physiology 2021-11, Vol.12, p.786752-786752 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:
Low-load resistance exercise (LL-RE) with blood flow restriction (BFR) promotes increased metabolic response and fatigue, as well as more pronounced myoelectric activity than traditional LL-RE. Some studies have shown that the relative pressure applied during exercise may have an effect on these variables, but existing evidence is contradictory.
Purpose:
The aim of this study was to systematically review and pool the available evidence on the differences in neuromuscular and metabolic responses at LL-RE with different pressure of BFR.
Methods:
The systematic review and meta-analysis was reported according to PRISMA items. Searches were performed in the following databases: CINAHL, PubMed, Scopus, SPORTDiscus and Web of Science, until June 15, 2021. Randomized or non-randomized experimental studies that analyzed LL-RE, associated with at least two relative BFR pressures [arterial occlusion pressure (AOP)%], on myoelectric activity, fatigue, or metabolic responses were included. Random-effects meta-analyses were performed for MVC torque (fatigue measure) and myoelectric activity. The quality of evidence was assessed using the PEDro scale.
Results:
Ten studies were included, all of moderate to high methodological quality. For MVC torque, there were no differences in the comparisons between exercise with 40–50% vs. 80–90% AOP. When analyzing the meta-analysis data, the results indicated differences in comparisons in exercise with 15–20% 1 repetition maximum (1RM), with higher restriction pressure evoking greater MVC torque decline (4 interventions, 73 participants; MD = −5.05 Nm [95%CI = −8.09; −2.01],
p
= 0.001,
I
2
= 0%). For myoelectric activity, meta-analyses indicated a difference between exercise with 40% vs. 60% AOP (3 interventions, 38 participants; SMD = 0.47 [95%CI = 0.02; 0.93],
p
= 0.04,
I
2
= 0%), with higher pressure of restriction causing greater myoelectric activity. This result was not identified in the comparisons between 40% vs. 80% AOP. In analysis of studies that adopted pre-defined repetition schemes, differences were found (4 interventions, 52 participants; SMD = 0.58 [95%CI = 0.11; 1.05],
p
= 0.02,
I
2
= 27%).
Conclusion:
The BFR pressure applied during the LL-RE may affect the magnitude of muscle fatigue and excitability when loads between 15 and 20% of 1RM and predefined repetition protocols (not failure) are prescribed, respectively.
Systematic Review Registration:
[
http://www.crd.york.ac.uk/prospero
], identifier [CRD42 |
---|---|
ISSN: | 1664-042X 1664-042X |
DOI: | 10.3389/fphys.2021.786752 |