Improved Weighted k-Nearest Neighbor Based on PSO for Wind Power System State Recognition
In this paper, we propose using particle swarm optimization (PSO) which can improve weighted k-nearest neighbors (PWKNN) to diagnose the failure of a wind power system. PWKNN adjusts weight to correctly reflect the importance of features and uses the distance judgment strategy to figure out the iden...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2020-10, Vol.13 (20), p.5520 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose using particle swarm optimization (PSO) which can improve weighted k-nearest neighbors (PWKNN) to diagnose the failure of a wind power system. PWKNN adjusts weight to correctly reflect the importance of features and uses the distance judgment strategy to figure out the identical probability of multi-label classification. The PSO optimizes the weight and parameter k of PWKNN. This testing is based on four classified conditions of the 300 W wind generator which include healthy, loss of lubrication in the gearbox, angular misaligned rotor, and bearing fault. Current signals are used to measure the conditions. This testing tends to establish a feature database that makes up or trains classifiers through feature extraction. Not lowering the classification accuracy, the correlation coefficient of feature selection is applied to eliminate irrelevant features and to diminish the runtime of classifiers. A comparison with other traditional classifiers, i.e., backpropagation neural network (BPNN), k-nearest neighbor (k-NN), and radial basis function network (RBFN) shows that PWKNN has a higher classification accuracy. The feature selection can diminish the average features from 16 to 2.8 and can reduce the runtime by 61%. This testing can classify these four conditions accurately without being affected by noise and it can reach an accuracy of 83% in the condition of signal-to-noise ratio (SNR) is 20dB. The results show that the PWKNN approach is capable of diagnosing the failure of a wind power system. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13205520 |