Internal‐Wave Dissipation Mechanisms and Vertical Structure in a High‐Resolution Regional Ocean Model
Motivated by the importance of mixing arising from dissipating internal waves (IWs), vertical profiles of internal‐wave dissipation from a high‐resolution regional ocean model are compared with finestructure estimates made from observations. A horizontal viscosity scheme restricted to only act on ho...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2024-09, Vol.51 (17), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the importance of mixing arising from dissipating internal waves (IWs), vertical profiles of internal‐wave dissipation from a high‐resolution regional ocean model are compared with finestructure estimates made from observations. A horizontal viscosity scheme restricted to only act on horizontally rotational modes (such as eddies) is introduced and tested. At lower resolutions with horizontal grid spacings of 2 km, the modeled IW dissipation from numerical model agrees reasonably well with observations in some cases when the restricted form of horizontal viscosity is used. This suggests the possibility that if restricted forms of horizontal viscosity are adopted by global models with similar resolutions, they could be used to diagnose and map IW dissipation distributions. At higher resolutions with horizontal grid spacings of ∼250 m, the dissipation from vertical shear and horizontal viscosity act much more strongly resulting in dissipation overestimates; however, the vertical‐shear dissipation itself is found to agree well with observations.
Plain Language Summary
Oceanic mixing impacts circulation, stratification (layering by density), and the uptake and transport of heat and nutrients. Over most of the ocean, mixing is caused by the breaking (turnover) of internal waves lying on the interfaces of density layers. Most ocean models do not contain a resolved internal wavefield, and therefore must parameterize internal wave (IW) mixing based upon external information. Recently developed high‐resolution ocean models with credible representations of internal waves may make it possible to map and understand global IW mixing without use of external information. Here we compare vertical profiles (profiles in depth) of IW dissipation in a regional model, which can be used to understand sensitivities to numerical schemes and grid spacings. With grid spacings that are attainable in global models, modeled dissipation profiles lie somewhat close to observed profiles, as long as certain choices are made within the numerical schemes. One numerical dissipation scheme is designed to realistically remove energy from eddy fields, which are the non‐wavelike motions in the ocean, and we have adapted this scheme to act less strongly on internal waves. Using this modified scheme, we find that high‐resolution global models may already be able to map IW dissipation.
Key Points
Vertical profiles of internal wave (IW) dissipation in high‐resolution regional ocean simul |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1029/2023GL108039 |