Design and Implementation of a Non-Common-View Axis Alignment System for Airborne Laser Communication
This paper proposes a non-common-view axis alignment method for the alignment requirements of airborne laser communication systems. The system consists of a ground transmitting end and an airborne relay terminal. The ground transmitting end uses a camera and a pan-tilt for image tracking, while the...
Gespeichert in:
Veröffentlicht in: | Photonics 2023-09, Vol.10 (9), p.1037 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a non-common-view axis alignment method for the alignment requirements of airborne laser communication systems. The system consists of a ground transmitting end and an airborne relay terminal. The ground transmitting end uses a camera and a pan-tilt for image tracking, while the airborne relay end uses a two-dimensional mirror to control the beam to achieve non-common-view axis alignment between the transmitting and receiving sides. The working principle and process of both the transmitter and receiver of the non-common-view axis alignment system for airborne laser communication were compared with traditional wireless optical alignment methods. The design process of the two-dimensional mirror used in this paper is introduced, the scanning trajectory of the two-dimensional mirror is simulated and analyzed according to the beam scanning principle, and the field experiment link is set up to carry out the airborne laser communication experiment. The experimental results show that when the link distance is 10 m, the tracking errors of the system in the azimuth and pitch directions are 19.02 µrad and 22.35 µrad respectively, and the amplitude of the electrical signal output by the signal detector is 84.0 mV; When the link distance is 20 m, the tracking errors of the system in the azimuth and pitch directions are 39.66 µrad and 33.94 µrad respectively, and the amplitude of the electrical signal output by the signal detector is 23.0 mV. Using this method, the alignment can be completed without data return, and the establishment of the reverse link can also be realized while the transmission link is quickly established, and there is no need for an air stability platform. The feasibility of the application of the non-common-view axis alignment method to the airborne laser communication system is verified. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics10091037 |