Blow-up criterion for strong solutions to the 3D magneto-micropolar fluid equations in the multiplier space
In this article, we study the blow-up of strong solutions to the magneto-micropolar (MMP) fluid equations in $mathbb{R}^3$. It is proved that if the gradient field of velocity satisfies $$ abla uin L^{2/(2-r)}(0,T;dot{X}_r(mathbb{R}^3))quad hbox{with }rin[0,1], $$ then the strong solution $(u,w,b)$...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2012-10, Vol.2012 (188), p.1-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the blow-up of strong solutions to the magneto-micropolar (MMP) fluid equations in $mathbb{R}^3$. It is proved that if the gradient field of velocity satisfies $$ abla uin L^{2/(2-r)}(0,T;dot{X}_r(mathbb{R}^3))quad hbox{with }rin[0,1], $$ then the strong solution $(u,w,b)$ can be extended beyond $t=T$. |
---|---|
ISSN: | 1072-6691 |