Nanostructural Deformation Analysis of Calcium Silicate Hydrate in Portland Cement Paste by Atomic Pair Distribution Function
The deformation of nanostructure of calcium silicate hydrate (C-S-H) in Portland cement (PC) paste under compression was characterized by the atomic pair distribution function (PDF), measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a s...
Gespeichert in:
Veröffentlicht in: | Advances in materials science and engineering 2016-01, Vol.2016 (2016), p.1-6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The deformation of nanostructure of calcium silicate hydrate (C-S-H) in Portland cement (PC) paste under compression was characterized by the atomic pair distribution function (PDF), measured using synchrotron X-ray diffraction. The PDF of the PC paste exhibited a unique deformation behavior for a short-range order below 2.0 nm, close to the size of the C-S-H globule, while the deformation for a long-range order was similar to that of a calcium hydroxide phase measured by Bragg peak shift. The compressive deformation of the C-S-H nanostructure was comprised of three stages with different interactions between globules. This behavior would originate from the granular nature of C-S-H, which deforms with increasing packing density by slipping the interfaces between globules, rearranging the overall C-S-H nanostructure. This new approach will lead to increasing applications of the PDF technique to understand the deformation mechanism of C-S-H in PC-based materials. |
---|---|
ISSN: | 1687-8434 1687-8442 |
DOI: | 10.1155/2016/8936084 |