Homoclinic solutions for a class of second-order Hamiltonian systems with locally defined potentials
In this article, we establish sufficient conditions for the existence of homoclinic solutions for a class of second-order Hamiltonian systems $$ \ddot u(t)-L(t)u(t)+\nabla W\bigl(t,u(t)\bigr)=f(t), $$ where L(t) is a positive definite symmetric matrix for all $t\in\mathbb{R}$. It is worth pointing o...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2017-09, Vol.2017 (205), p.1-7 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we establish sufficient conditions for the existence of homoclinic solutions for a class of second-order Hamiltonian systems $$ \ddot u(t)-L(t)u(t)+\nabla W\bigl(t,u(t)\bigr)=f(t), $$ where L(t) is a positive definite symmetric matrix for all $t\in\mathbb{R}$. It is worth pointing out that the potential function W(t,u) is locally defined and can be superquadratic or subquadratic with respect to u. |
---|---|
ISSN: | 1072-6691 |