Homoclinic solutions for a class of second-order Hamiltonian systems with locally defined potentials

In this article, we establish sufficient conditions for the existence of homoclinic solutions for a class of second-order Hamiltonian systems $$ \ddot u(t)-L(t)u(t)+\nabla W\bigl(t,u(t)\bigr)=f(t), $$ where L(t) is a positive definite symmetric matrix for all $t\in\mathbb{R}$. It is worth pointing o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2017-09, Vol.2017 (205), p.1-7
1. Verfasser: Xiang Lv
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we establish sufficient conditions for the existence of homoclinic solutions for a class of second-order Hamiltonian systems $$ \ddot u(t)-L(t)u(t)+\nabla W\bigl(t,u(t)\bigr)=f(t), $$ where L(t) is a positive definite symmetric matrix for all $t\in\mathbb{R}$. It is worth pointing out that the potential function W(t,u) is locally defined and can be superquadratic or subquadratic with respect to u.
ISSN:1072-6691