Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

Producing domestic hot water (DHW) with a ground source heat pump (GSHP) is challenging due to the high temperature (HT) of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2015-08, Vol.8 (8), p.8447-8466
Hauptverfasser: Yrjölä, Jukka, Laaksonen, Eetu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Producing domestic hot water (DHW) with a ground source heat pump (GSHP) is challenging due to the high temperature (HT) of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT) and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.
ISSN:1996-1073
1996-1073
DOI:10.3390/en8088447