Polymethyl(1–Butyric acidyl)silane–Assisted Dispersion and Density Gradient Ultracentrifugation Separation of Single–Walled Carbon Nanotubes

Individual single–walled carbon nanotubes (SWNTs) with distinct electronic types are crucial for the fabrication of SWNTs–based electronic and magnetic devices. Herein, the water–soluble polymethyl(1–butyric acidyl)silane (BA–PMS) was synthesized via the hydrosilylation reaction between 3–butenoic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-06, Vol.12 (12), p.2094
Hauptverfasser: Liu, Hongming, Zhou, Qin, Lian, Yongfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Individual single–walled carbon nanotubes (SWNTs) with distinct electronic types are crucial for the fabrication of SWNTs–based electronic and magnetic devices. Herein, the water–soluble polymethyl(1–butyric acidyl)silane (BA–PMS) was synthesized via the hydrosilylation reaction between 3–butenoic acid and polymethylsilane catalyzed by 2,2′–azodibutyronitrile. As a new dispersant, BA–PMS displayed a quite good dispersing capacity to arc–discharged SWNTs and moderate selectivity for metallic species. The application of sucrose–DGU, the density gradient ultracentrifugation with sucrose as the gradient medium, to the co–surfactants (BA–PMS and sodium dodecyl sulfonate) individually dispersed SWNTs yielded metallic SWNTs of 85.6% purity and semiconducting SWNTs of 99% purity, respectively. This work paves a path to the DGU separation of the SWNTs dispersed by polymer–based dispersants with hydrophobic alkyl chains.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12122094