Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$R2 with finite total area

Abstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical sciences 2018-12, Vol.8 (3), p.603-617
1. Verfasser: Hsu, Shu-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the regions inside and outside $$\gamma $$ γ respectively with respect to the metric g. Under some mild growth conditions on g we prove the existence of a minimizer for $$I_g$$ Ig . As a corollary we obtain a proof for the existence of a minimizer for $$I_{g(t)}$$ Ig(t) for any $$0
ISSN:1664-3607
1664-3615
DOI:10.1007/s13373-018-0131-3