Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$R2 with finite total area
Abstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the re...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical sciences 2018-12, Vol.8 (3), p.603-617 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the regions inside and outside $$\gamma $$ γ respectively with respect to the metric g. Under some mild growth conditions on g we prove the existence of a minimizer for $$I_g$$ Ig . As a corollary we obtain a proof for the existence of a minimizer for $$I_{g(t)}$$ Ig(t) for any $$0 |
---|---|
ISSN: | 1664-3607 1664-3615 |
DOI: | 10.1007/s13373-018-0131-3 |