Complexity from spinning primaries

A bstract We define circuits given by unitary representations of Lorentzian conformal field theory in 3 and 4 dimensions. Our circuits start from a spinning primary state, allowing us to generalize formulas for the circuit complexity obtained from circuits starting from scalar primary states. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2021-12, Vol.2021 (12), p.1-27, Article 30
Hauptverfasser: de Mello Koch, Robert, Kim, Minkyoo, Van Zyl, Hendrik J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We define circuits given by unitary representations of Lorentzian conformal field theory in 3 and 4 dimensions. Our circuits start from a spinning primary state, allowing us to generalize formulas for the circuit complexity obtained from circuits starting from scalar primary states. These results are nicely reproduced in terms of the geometry of coadjoint orbits of the conformal group. In contrast to the complexity geometry obtained from scalar primary states, the geometry is more complicated and the existence of conjugate points, signaling the saturation of complexity, remains open.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP12(2021)030