Inhibitor 9 Combined With Androgen Deprivation Therapy or Chemotherapy Delays the Malignant Behavior of Castration-Resistant Prostate Cancer Through K-Ras/PLCε/PKCε Signaling Pathway (Retracted Article)

Castration-resistant prostate cancer (CRPC) is a progressed stage of prostate cancer, which requires better understanding of the mechanisms and remains an unmet clinical need. As a common oncogene, K-Ras is associated with malignant behavior in different types of tumors but its role in CRPC is unkno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in oncology 2020-02, Vol.10, p.75-75, Article 75
Hauptverfasser: Liu, Jiayu, Zheng, Yongbo, Gao, Yingying, Quan, Zhen, Qiao, Bo, Li, Luo, Li, Ting, Duan, Limei, Yang, Jinxiao, Luo, Chunli, Wu, Xiaohou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Castration-resistant prostate cancer (CRPC) is a progressed stage of prostate cancer, which requires better understanding of the mechanisms and remains an unmet clinical need. As a common oncogene, K-Ras is associated with malignant behavior in different types of tumors but its role in CRPC is unknown. The present study aims to find the mechanism of K-Ras in CRPC and whether it can be used as a crucial molecule for the treatment of CRPC. For this purpose, tissue samples from primary prostate cancer (PPC) and CRPC patients were analyzed by immunohistochemistry and the data showed that K-Ras was elevated in CRPC. More importantly, higher K-Ras expression was related to a shorter recurrence-free survival time in patients with CRPC. In addition, K-Ras promoted the invasion, migration, and drug resistance of CRPC cells by activation of PLC epsilon/PKC epsilon signaling pathway. Meanwhile, the inhibitor of K-RasG12C mutants was able to inhibit malignant behavior of CRPC cells in vitro and in vivo. Inhibitors of K-RasG12C mutants have entered clinical trials. Taken together, the study shows that K-Ras may activate PKC epsilon through PLC epsilon, resulting in the alterations of malignant behavior of CRPC. Inhibitor 9, an inhibitor of the K-RasG12C mutant, has a strong anti-tumor effect in CRPC, which potentially suggests that inhibitors of this nature may serve as a promising treatment for CRPC.
ISSN:2234-943X
2234-943X
DOI:10.3389/fonc.2020.00075