MsFtsH8 Enhances the Tolerance of PEG-Simulated Drought Stress by Boosting Antioxidant Capacity in Medicago sativa L
Drought is a major abiotic stress that limits the growth and yield of alfalfa, a vital forage legume. The plant metalloproteinase Filamentation temperature-sensitive H (FtsH) is an ATP- and Zn -dependent enzyme that plays a significant character in the plant's response to environmental stress....
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2024-11, Vol.13 (21), p.3025 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drought is a major abiotic stress that limits the growth and yield of alfalfa, a vital forage legume. The plant metalloproteinase Filamentation temperature-sensitive H (FtsH) is an ATP- and Zn
-dependent enzyme that plays a significant character in the plant's response to environmental stress. However, its functional role in drought resistance remains largely unexplored. This study investigates the drought tolerance role of alfalfa
by analyzing the growth, physiology, and gene expression of overexpressing plants under drought conditions. The results demonstrated that both
-overexpressing
and alfalfa plants exhibited superior growth condition and enhanced membrane stability. The overexpressing alfalfa plants also showed reduced MDA levels, higher proline content, lower H
O
accumulation, an increased activity of antioxidant-related enzymes (SOD, POD, and CAT) activity, and an elevated expression of antioxidant-related genes. These results indicated that the overexpression of
enhanced growth, improved osmotic regulation, reduced ROS levels, and increased antioxidative capacity, ultimately leading to greater drought tolerance in alfalfa. Our findings suggest that
mitigates oxidative damage caused by drought by modulating the plant's antioxidant system, thus improving drought tolerance in alfalfa. This study provides a molecular basis and candidate genes for enhancing drought resistance in alfalfa through genetic engineering. |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants13213025 |