Selection of Unmanned Aerial Vehicles by Using Multicriteria Decision-Making for Defence
The unmanned systems have been seeing a significant boom in the last ten years in different areas together with technological developments. One of the unmanned systems is unmanned aerial vehicles (UAVs). UAVs are used for reconnaissance and observation in the military areas and play critical role in...
Gespeichert in:
Veröffentlicht in: | Journal of Mathematics 2020, Vol.2020 (2020), p.1-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The unmanned systems have been seeing a significant boom in the last ten years in different areas together with technological developments. One of the unmanned systems is unmanned aerial vehicles (UAVs). UAVs are used for reconnaissance and observation in the military areas and play critical role in attack and destroy missions. These vehicles have been winning more features together with developing technology in todays world. In addition, they have been varying with different features. A systematic and efficient approach for the selection of the UAV is necessary to choose a best alternative for the critical tasks under consideration. The multicriteria decision-making (MCDM) approaches that are analytic processes are well suited to deal intricacy in selection of alternative vehicles. This study also proposes an integrated methodology based on the analytic hierarch process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) to evaluate UAV alternatives for selection process. Firstly, AHP, a MCDM method, is used to determine the weights of each critical factor. Subsequently, it is utilized with the TOPSIS approach to rank the vehicle alternatives in the decision problem. Result of the study shows that UAV-1 was selected as the most suitable vehicle. In results, it is seen that the weights of the evaluation criteria found by using AHP affect the decision-making process. Finally, the validation and sensitivity analysis of the solution are made and discussed. |
---|---|
ISSN: | 2314-4629 2314-4785 |
DOI: | 10.1155/2020/4308756 |