A Computational Approach to Confidence Intervals and Testing for Generalized Pareto Index Using the Greenwood Statistic
* The generalized Pareto distributions (GPDs) play an important role in the statistics of extremes. We point various problems with the likelihood-based inference for the index parameter [alpha] of the GPDs, and develop alternative testing strategies, which do not require parameter estimation. Our te...
Gespeichert in:
Veröffentlicht in: | Revstat 2023-07, Vol.21 (3), p.367 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | * The generalized Pareto distributions (GPDs) play an important role in the statistics of extremes. We point various problems with the likelihood-based inference for the index parameter [alpha] of the GPDs, and develop alternative testing strategies, which do not require parameter estimation. Our test statistic is the Greenwood statistic, which probability distribution is stochastically increasing with respect to [alpha] within the GPDs. We compare the performance of our test to a test with maximum-to-sum ratio test statistic [R.sub.n]New results on the properties of the [R.sub.n] are also presented, as well as recommendations for calculating the p-values and illustrative data examples. Keywords: * coefficient of variation; extremes; generalized Pareto distribution; heavy tailed distribution; power law; peak-over-threshold. |
---|---|
ISSN: | 1645-6726 2183-0371 |
DOI: | 10.57805/revstat.v21i3.357 |