Non-collinear magnetic atomic cluster expansion for iron
The Atomic Cluster Expansion (ACE) provides a formally complete basis for the local atomic environment. ACE is not limited to representing energies as a function of atomic positions and chemical species, but can be generalized to vectorial or tensorial properties and to incorporate further degrees o...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2024-01, Vol.10 (1), p.12-12, Article 12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Atomic Cluster Expansion (ACE) provides a formally complete basis for the local atomic environment. ACE is not limited to representing energies as a function of atomic positions and chemical species, but can be generalized to vectorial or tensorial properties and to incorporate further degrees of freedom (DOF). This is crucial for magnetic materials with potential energy surfaces that depend on atomic positions and atomic magnetic moments simultaneously. In this work, we employ the ACE formalism to develop a non-collinear magnetic ACE parametrization for the prototypical magnetic element Fe. The model is trained on a broad range of collinear and non-collinear magnetic structures calculated using spin density functional theory. We demonstrate that the non-collinear magnetic ACE is able to reproduce not only ground state properties of various magnetic phases of Fe but also the magnetic and lattice excitations that are essential for a correct description of finite temperature behavior and properties of crystal defects. |
---|---|
ISSN: | 2057-3960 2057-3960 |
DOI: | 10.1038/s41524-024-01196-8 |