Multi-Field Coupling Analysis and Demagnetization Experiment of Permanent Magnet Retarder for Heavy Vehicles (MAY 2018)
A new permanent magnet retarder (PMR), which based on the principle of eddy-current braking, is proposed as an auxiliary braking apparatus for heavy vehicles. Its braking torque can be stepless adjusted by the adjustment mechanism. A multi-physics field coupling model of the retarder was established...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.50734-50745 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new permanent magnet retarder (PMR), which based on the principle of eddy-current braking, is proposed as an auxiliary braking apparatus for heavy vehicles. Its braking torque can be stepless adjusted by the adjustment mechanism. A multi-physics field coupling model of the retarder was established, which includes electromagnetic field, thermal field, and fluid field. The distributions of the three fields were calculated using the finite-element method. To predict the demagnetization of the permanent magnet, a new analysis method of the permanent magnet irreversible demagnetization is proposed, which uses the dynamic air-gap flux density simulated under various temperature B - H curves and the relationship between the braking torque, as well as the square of air-gap flux density. The braking torque and temperature rise of the PMR were tested on the bench. The bench test results show that the braking torque calculated by the multi-physics coupling method agrees better with the experimental data, and the high-temperature irreversible demagnetizations of the permanent magnet occurred by the enormous heat generated during continuous braking. The vehicle test results show that the braking distance can be shortened by 34% after using the PMR, and the braking deceleration is increased by 1.05 m/ \text{s}^{2} . The proposed PMR can meet the requirements of auxiliary braking for heavy vehicles. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2018.2884236 |