LogNNet Neural Network Application for Diabetes Mellitus Diagnosis

The paper presents a LogNNet neural network algorithm for diabetes mellitus diagnosing based on a public dataset. The study used 100 thousand records of patient conditions. Model quality was evaluated using the Matthews Correlation Coefficient metric (MCC). The LogNNet neural network model showed hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIO web of conferences 2024-01, Vol.105, p.2003
Hauptverfasser: Izotov, Y. A., Huyut, M. T., Velichko, A. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents a LogNNet neural network algorithm for diabetes mellitus diagnosing based on a public dataset. The study used 100 thousand records of patient conditions. Model quality was evaluated using the Matthews Correlation Coefficient metric (MCC). The LogNNet neural network model showed high accuracy (MCC=0.733) in diabetes mellitus recognition. A highly positive relationship between HbA1c level and glucose level in the disease diagnosing was found using the LogNNet model. It has been observed that evaluating these variables together is much more effective than their individual effects in diagnosing the disease.
ISSN:2117-4458
2117-4458
DOI:10.1051/bioconf/202410502003