Dataset Optimization for Real-Time Pedestrian Detection
This paper tackles the problem of data selection for training set generation in the context of near real-time pedestrian detection through the introduction of a training methodology: FairTrain. After highlighting the impact of poorly chosen data on detector performance, we introduce a new data selec...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.7719-7727 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper tackles the problem of data selection for training set generation in the context of near real-time pedestrian detection through the introduction of a training methodology: FairTrain. After highlighting the impact of poorly chosen data on detector performance, we introduce a new data selection technique utilizing the expectation-maximization algorithm for data weighting. FairTrain also features a version of the cascade-of-rejectors enhanced with data selection principles. Experiments on the INRIA and CALTECH data sets prove that, when finely trained, a simple HoG-based detector can outperform most of its near real-time competitors. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2017.2788058 |