Finite Temperature Ultraviolet-Visible Dielectric Functions of Tantalum Pentoxide: A Combined Spectroscopic Ellipsometry and First-Principles Study

Tantalum pentoxide (Ta2O5) has demonstrated promising applications in gate dielectrics and microwave communication devices with its intrinsically high dielectric constant and low dielectric loss. Although there are numerous studies on the dielectric properties of Ta2O5, few studies have focused on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics 2022-07, Vol.9 (7), p.440
Hauptverfasser: Zhang, Wenjie, Zeng, Zhaohui, Cheng, Tao, Fei, Tianhao, Fu, Zhiwei, Liu, Xiaoyan, Zhang, Jingyi, Yang, Jia-Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tantalum pentoxide (Ta2O5) has demonstrated promising applications in gate dielectrics and microwave communication devices with its intrinsically high dielectric constant and low dielectric loss. Although there are numerous studies on the dielectric properties of Ta2O5, few studies have focused on the influence of external environmental changes (i.e., temperature and pressure) on the dielectric properties and the underlying physics is not fully understood. Herein, we synthesize Ta2O5 thin films using the magnetron sputtering method, measure the ultraviolet-visible dielectric function at temperatures varying from 300 to 873 K by spectroscopic ellipsometry (SE), and investigate the temperature influence on the dielectric function from first principles. SE experiments observe that temperature has a nontrivial influence on the ultraviolet-visible dielectric function, accompanying the consistently decreased amplitude and increased broadening width for the dominant absorption peak. First-principles calculations confirm that the dominant absorption peak originates from the aggregated energy states near the valence band maximum (VBM) and conduction band minimum (CBM), and the theoretically predicted dielectric functions demonstrate good agreement with the SE experiments. Moreover, by performing first-principles molecular dynamics simulations, the finite-temperature dielectric function is predicted and its change trend with increasing temperature agrees overall with the SE measurements. This work explores the physical origins of temperature influence on the ultraviolet-visible dielectric function of Ta2O5, aimed at promoting its applications in the field of micro-/nanoelectronics.
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics9070440